Extensions 1→N→G→Q→1 with N=C22 and Q=C10×A4

Direct product G=N×Q with N=C22 and Q=C10×A4
dρLabelID
A4×C22×C10120A4xC2^2xC10480,1208

Semidirect products G=N:Q with N=C22 and Q=C10×A4
extensionφ:Q→Aut NdρLabelID
C22⋊(C10×A4) = C10×C22⋊A4φ: C10×A4/C22×C10C3 ⊆ Aut C2260C2^2:(C10xA4)480,1209
C222(C10×A4) = C5×D4×A4φ: C10×A4/C5×A4C2 ⊆ Aut C22606C2^2:2(C10xA4)480,1127

Non-split extensions G=N.Q with N=C22 and Q=C10×A4
extensionφ:Q→Aut NdρLabelID
C22.1(C10×A4) = C10×C42⋊C3φ: C10×A4/C22×C10C3 ⊆ Aut C22603C2^2.1(C10xA4)480,654
C22.2(C10×A4) = C5×C24⋊C6φ: C10×A4/C22×C10C3 ⊆ Aut C22406C2^2.2(C10xA4)480,656
C22.3(C10×A4) = C5×C42⋊C6φ: C10×A4/C22×C10C3 ⊆ Aut C22806C2^2.3(C10xA4)480,657
C22.4(C10×A4) = C5×C23.A4φ: C10×A4/C22×C10C3 ⊆ Aut C22606C2^2.4(C10xA4)480,658
C22.5(C10×A4) = C5×D4.A4φ: C10×A4/C5×A4C2 ⊆ Aut C22804C2^2.5(C10xA4)480,1132
C22.6(C10×A4) = C20×SL2(𝔽3)central extension (φ=1)160C2^2.6(C10xA4)480,655
C22.7(C10×A4) = A4×C2×C20central extension (φ=1)120C2^2.7(C10xA4)480,1126
C22.8(C10×A4) = C2×C10×SL2(𝔽3)central extension (φ=1)160C2^2.8(C10xA4)480,1128
C22.9(C10×A4) = C10×C4.A4central extension (φ=1)160C2^2.9(C10xA4)480,1130

׿
×
𝔽